Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
1.
International Journal of Stem Cells ; : 192-201, 2020.
Article | WPRIM | ID: wpr-834291

ABSTRACT

Background and Objectives@#Tcfs and Lef1 are DNA-binding transcriptional factors in the canonical Wnt signaling pathway. In the absence of β-catenin, Tcfs and Lef1 generally act as transcriptional repressors with co-repressor proteins such as Groucho, CtBP, and HIC-5. However, Tcfs and Lef1 turn into transcriptional activators during the interaction with β-catenin. Therefore, the activity of Tcfs and Lef1 is regulated by β-catenin. However, the intrinsic role of Tcfs and Lef1 has yet to be examined. The purpose of this study was to determine whether Tcfs and Lef1 play differential roles in the regulation of self-renewal and differentiation of mouse ES cells. @*Methods@#and Results: Interestingly, the expression of Tcfs and Lef1 was dynamically altered under various differentiation conditions, such as removal of LIF, EB formation and neuronal differentiation in N2B27 media, suggesting that the function of each Tcf and Lef1 may vary in ES cells. Ectopic expression of Tcf1 or the dominant negative form of Lef1 (Lef1-DN) contributes to ES cells to self-renew in the absence of leukemia inhibitory factor (LIF), whereas ectopic expression of Tcf3, Lef1 or Tcf1-DN did not support ES cells to self-renew. Ectopic expression of either Lef1 or Lef1-DN blocked neuronal differentiation, suggesting that the transient induction of Lef1 was necessary for the initiation and progress of differentiation. ChIP analysis shows that Tcf1 bound to Nanog promoter and ectopic expression of Tcf1 enhanced the transcription of Nanog. @*Conclusions@#The overall data suggest that Tcf1 plays a critical role in the maintenance of stemness whereas Lef1 is involved in the initiation of differentiation.

2.
Chinese Medical Journal ; (24): 3786-3793, 2011.
Article in English | WPRIM | ID: wpr-273974

ABSTRACT

<p><b>BACKGROUND</b>Hepatocyte transplantation has been proposed as an alternative to whole-organ transplantation to support many forms of hepatic insufficiency. Unfortunately, the lack of donor livers makes it difficult to obtain enough viable human hepatocytes for hepatocyte-based therapies. Therefore, it is urgent to find new ways to provide ample hepatocytes. Induced pluripotent stem (iPS) cells, a breakthrough in stem cell research, may terminate these hinders for cell transplantation. For the promise of iPS cells to be realized in liver diseases, it is necessary to determine if and how efficient they can be differentiated into functional hepatocytes.</p><p><b>METHODS</b>In this study, we directly compared the hepatic-differentiation capacity of mouse iPS cells and embryonic stem (ES) cells with three different induction approaches: conditions via embryonic body (EB) formation plus cytokines, conditions by combination of dimethyl sulfoxide and sodium butyrate and chemically defined, serum free monolayer conditions. Among these three induction conditions, more homogenous populations can be promoted under chemically defined, serum free conditions. The cells generated under these conditions exhibited hepatic functions in vitro, including glycogen storage, indocynine green (ICG) uptake and release as well as urea secretion. Although efficient hepatocytes differentiation from mouse iPS cells were observed, mouse iPS cells showed relatively lower hepatic induction efficiency compared with mouse ES cells.</p><p><b>RESULTS</b>Mouse iPS cells would be efficiently differentiated into functional hepatocytes in vitro, which may be helpful in facilitating the development of hepatocytes for transplantation and for research on drug discovery.</p><p><b>CONCLUSION</b>We demonstrate that mouse iPS cells retain full potential for fetal liver development and describe procedures that facilitates the efficient generation of highly differentiated human hepatocyte-like cells from iPS cells in vitro.</p>


Subject(s)
Animals , Mice , Butyrates , Pharmacology , Cell Differentiation , Cells, Cultured , Cytokines , Pharmacology , Embryonic Stem Cells , Cell Biology , Hepatocytes , Cell Biology , Metabolism , Induced Pluripotent Stem Cells , Cell Biology , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL